Labels
compute_mfi
compute_mfi (cell_mask, channel1, channel2=None, channel3=None, nuclear_mask=None)
Fast computation of mean fluorescence intensity (MFI) per cell and per nucleus using vectorized numpy.bincount operations.
Type | Default | Details | |
---|---|---|---|
cell_mask | 2D int array | Label mask of cells (0 = background). | |
channel1 | 2D float array | First fluorescence channel. | |
channel2 | NoneType | None | Second fluorescence channel. |
channel3 | NoneType | None | Third fluorescence channel. |
nuclear_mask | NoneType | None | Label mask of nuclei (0 = background). If provided, nuclei MFI is computed. |
Returns | pd.DataFrame | DataFrame with columns: - region: ‘cell’ or ‘nucleus’ - label: integer label - mfi_ch1, mfi_ch2, mfi_ch3 (if provided) |
/opt/hostedtoolcache/Python/3.10.18/x64/lib/python3.10/site-packages/fastcore/docscrape.py:230: UserWarning: Unknown section Parameters:
else: warn(msg)
plot_channel_mask
plot_channel_mask (mask, channel1, channel2=None, channel3=None, save_path=None, nuclear_mask=None)
*Plot up to three fluorescence channels with cell and nuclear mask overlays.
If only channel1 is provided, uses Spectral colormap. If channel2 and channel3 are provided, displays: - channel1 in green - channel2 in magenta - channel3 in yellow*
plot_label_mask
plot_label_mask (mask, cell_type_map=None, type_colors=None, default_color=(0, 0, 0), outline_color='black', seed=None, save_path=None, nuclear_mask=None)
Plot a label mask coloring cells based on their assigned type. Unspecified or ‘other’ cells remain in default_color (black by default). Adds outlines for both cell and nuclear masks in specified color.
expand_with_cap
expand_with_cap (label_image:numpy.ndarray, spacing:Tuple[float,float], fixed_expand:float=10.0, max_area_ratio:float=1.5)
Expand labeled nuclei by up to a fixed radius, capped by max area ratio.
Type | Default | Details | |
---|---|---|---|
label_image | ndarray | 2D integer array of labels (0=background). | |
spacing | Tuple | Physical size (µm) of each pixel along (row, column) axes. | |
fixed_expand | float | 10.0 | Nominal expansion radius in µm. Default is 10.0. |
max_area_ratio | float | 1.5 | Maximum allowed area increase factor. Default is 1.5. |
Returns | ndarray | Dilated label image, where each pixel is assigned to the nearest original label if within its per-pixel cap. |
get_physical_size
get_physical_size (filename:str, verbose:bool=False)
Compute the physical pixel size (µm/px) from a TIFF file’s resolution metadata.
Type | Default | Details | |
---|---|---|---|
filename | str | Path to the TIFF file. | |
verbose | bool | False | If True, print resolution details. Default is False. |
Returns | float | Physical size of a pixel in microns. Raises if pixels are non-square. |
plot_outlines
plot_outlines (mask:numpy.ndarray, image:numpy.ndarray, save_path:str=None)
Overlay nuclear outlines from a mask onto an image and optionally save the result.
Type | Default | Details | |
---|---|---|---|
mask | ndarray | 2D array of integer labels where nonzero values indicate nuclei. | |
image | ndarray | Grayscale image array of the same shape as mask . |
|
save_path | str | None | File path in which to save the outline image. If None, no file is written. |
Returns | matplotlib.figure.Figure | Figure object containing the outline overlay. |
predict
predict (img_list:list, use_gpu:bool, model_path:str=None, diameters:float=None, cellpose_param:tuple=(0.4, 0.0))
*Run a Cellpose segmentation model to generate segmentation masks for a list of images.
This function loads a Cellpose model and applies it to each image in the provided list. If a custom model path is given, it uses that pretrained model; otherwise, it defaults to the nuclei segmentation model. The segmentation thresholds can be controlled via cellpose_param, and an estimated diameter of the objects (nuclei) to segment can be provided when using the default model.*
Type | Default | Details | |
---|---|---|---|
img_list | list | A list of image arrays (grayscale) to segment. | |
use_gpu | bool | Indicates whether to use GPU acceleration for model evaluation. | |
model_path | str | None | Path to a custom pretrained Cellpose model. If None, the default nuclei model is used. |
diameters | float | None | Estimated diameter (in pixels) of the objects (nuclei) to segment. This is used only when model_path is None. |
cellpose_param | tuple | (0.4, 0.0) | A tuple (flow_threshold, cellprob_threshold) to control the Cellpose evaluation parameters. Defaults to (0.4, 0.0). |
Returns | ndarray | Array of shape (N, H, W) containing the segmentation masks for each input image. |